Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not CI-groups.
Journal of Algebraic Combinatorics, Tome 26 (2007) no. 3, pp. 343-355.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove that an elementary Abelian $p$-group of rank $4 p - 2$ is not a CI $^{(2)}$-group, i.e. there exists a 2-closed transitive permutation group containing two non-conjugate regular elementary Abelian $p$-subgroups of rank $4 p - 2$, see Hirasaka and Muzychuk (J. Comb. Theory Ser. A $94(2)$, 339-362, 2001). It was shown in Hirasaka and Muzychuk (loc cit) and Muzychuk (Discrete Math. 264(1-3), 167-185, 2003) that this is related to the problem of determining whether an elementary Abelian $p$-group of rank $n$ is a CI-group. As a strengthening of this result we prove that an elementary Abelian $p$-group $E$ of rank greater or equal to $4 p - 2$ is not a CI-group, i.e. there exist two isomorphic Cayley digraphs over $E$ whose corresponding connection sets are not conjugate in Aut $E$.
Keywords: keywords Cayley graph, CI-group, Schur ring, 2-closure
@article{JAC_2007__26_3_a3,
     author = {Spiga, Pablo},
     title = {Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not {CI-groups.}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {343--355},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__26_3_a3/}
}
TY  - JOUR
AU  - Spiga, Pablo
TI  - Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not CI-groups.
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 343
EP  - 355
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__26_3_a3/
LA  - en
ID  - JAC_2007__26_3_a3
ER  - 
%0 Journal Article
%A Spiga, Pablo
%T Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not CI-groups.
%J Journal of Algebraic Combinatorics
%D 2007
%P 343-355
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__26_3_a3/
%G en
%F JAC_2007__26_3_a3
Spiga, Pablo. Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not CI-groups.. Journal of Algebraic Combinatorics, Tome 26 (2007) no. 3, pp. 343-355. http://geodesic.mathdoc.fr/item/JAC_2007__26_3_a3/