A periodicity theorem for the octahedron recurrence
Journal of Algebraic Combinatorics, Tome 26 (2007) no. 1, pp. 1-26.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The octahedron recurrence lives on a 3-dimensional lattice and is given by $f( x, y, t+1)=$( f( x+1, $y, t) f( x -1, y, t)+ f( x, y+1, t) f( x, y -1, t))/ f( x, y, t -1) f(x,y,t+1)=(f(x+1,y,t)f(x-1,y,t)+f(x,y+1,t)f(x,y-1,t))/f(x,y,t-1)$. In this paper, we investigate a variant of this recurrence which lives in a lattice contained in $[0, m] \times [0, n] \times \mathbb R$ [0,m] $\times $[0,n] $\times \mathbb R$. Following Speyer, we give an explicit non-recursive formula for the values of this recurrence and use it to prove that it is periodic of period $n+ m$. We then proceed to show various other hidden symmetries satisfied by this bounded octahedron recurrence.
Keywords: keywords octahedron recurrence, Laurent phenomenon, perfect matchings
@article{JAC_2007__26_1_a5,
     author = {Henriques, Andr\'e},
     title = {A periodicity theorem for the octahedron recurrence},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1--26},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a5/}
}
TY  - JOUR
AU  - Henriques, André
TI  - A periodicity theorem for the octahedron recurrence
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 1
EP  - 26
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a5/
LA  - en
ID  - JAC_2007__26_1_a5
ER  - 
%0 Journal Article
%A Henriques, André
%T A periodicity theorem for the octahedron recurrence
%J Journal of Algebraic Combinatorics
%D 2007
%P 1-26
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a5/
%G en
%F JAC_2007__26_1_a5
Henriques, André. A periodicity theorem for the octahedron recurrence. Journal of Algebraic Combinatorics, Tome 26 (2007) no. 1, pp. 1-26. http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a5/