Quantum automorphism groups of vertex-transitive graphs of order $\leq 11$
Journal of Algebraic Combinatorics, Tome 26 (2007) no. 1, pp. 83-105.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study quantum automorphism groups of vertex-transitive graphs having less than 11 vertices. With one possible exception, these can be obtained from cyclic groups $\mathbb Z _{ n} {\mathbb Z}$_n, symmetric groups $S _{ n }$ and quantum symmetric groups $Q _{ n} \mathcal Q$_n, by using various product operations. The exceptional case is that of the Petersen graph, and we present some questions about it.
Keywords: keywords quantum permutation group, transitive graph
@article{JAC_2007__26_1_a2,
     author = {Banica, Teodor and Bichon, Julien},
     title = {Quantum automorphism groups of vertex-transitive graphs of order $\leq 11$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {83--105},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a2/}
}
TY  - JOUR
AU  - Banica, Teodor
AU  - Bichon, Julien
TI  - Quantum automorphism groups of vertex-transitive graphs of order $\leq 11$
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 83
EP  - 105
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a2/
LA  - en
ID  - JAC_2007__26_1_a2
ER  - 
%0 Journal Article
%A Banica, Teodor
%A Bichon, Julien
%T Quantum automorphism groups of vertex-transitive graphs of order $\leq 11$
%J Journal of Algebraic Combinatorics
%D 2007
%P 83-105
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a2/
%G en
%F JAC_2007__26_1_a2
Banica, Teodor; Bichon, Julien. Quantum automorphism groups of vertex-transitive graphs of order $\leq 11$. Journal of Algebraic Combinatorics, Tome 26 (2007) no. 1, pp. 83-105. http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a2/