On permutations of order dividing a given integer
Journal of Algebraic Combinatorics, Tome 26 (2007) no. 1, pp. 125-142.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a detailed analysis of the proportion of elements in the symmetric group on $n$ points whose order divides $m$, for $n$ sufficiently large and $m\geq n$ with $m= O( n)$.
Classification : 20B30, 20P05
Keywords: keywords symmetric group, proportions
@article{JAC_2007__26_1_a0,
     author = {Niemeyer, Alice C. and Praeger, Cheryl E.},
     title = {On permutations of order dividing a given integer},
     journal = {Journal of Algebraic Combinatorics},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a0/}
}
TY  - JOUR
AU  - Niemeyer, Alice C.
AU  - Praeger, Cheryl E.
TI  - On permutations of order dividing a given integer
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 125
EP  - 142
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a0/
LA  - en
ID  - JAC_2007__26_1_a0
ER  - 
%0 Journal Article
%A Niemeyer, Alice C.
%A Praeger, Cheryl E.
%T On permutations of order dividing a given integer
%J Journal of Algebraic Combinatorics
%D 2007
%P 125-142
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a0/
%G en
%F JAC_2007__26_1_a0
Niemeyer, Alice C.; Praeger, Cheryl E. On permutations of order dividing a given integer. Journal of Algebraic Combinatorics, Tome 26 (2007) no. 1, pp. 125-142. http://geodesic.mathdoc.fr/item/JAC_2007__26_1_a0/