Enumeration of non-positive planar trivalent graphs
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 4, pp. 357-373.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we construct inverse bijections between two sequences of finite sets. One sequence is defined by planar diagrams and the other by lattice walks. In [13] it is shown that the number of elements in these two sets are equal. This problem and the methods we use are motivated by the representation theory of the exceptional simple Lie algebra $G _{2}$. However in this account we have emphasised the combinatorics.
Keywords: planar graphs, lattice paths, invariant tensors
@article{JAC_2007__25_4_a4,
     author = {Westbury, Bruce W.},
     title = {Enumeration of non-positive planar trivalent graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {357--373},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a4/}
}
TY  - JOUR
AU  - Westbury, Bruce W.
TI  - Enumeration of non-positive planar trivalent graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 357
EP  - 373
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a4/
LA  - en
ID  - JAC_2007__25_4_a4
ER  - 
%0 Journal Article
%A Westbury, Bruce W.
%T Enumeration of non-positive planar trivalent graphs
%J Journal of Algebraic Combinatorics
%D 2007
%P 357-373
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a4/
%G en
%F JAC_2007__25_4_a4
Westbury, Bruce W. Enumeration of non-positive planar trivalent graphs. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 4, pp. 357-373. http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a4/