Bijective proofs of shifted tableau and alternating sign matrix identities
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 4, pp. 417-458.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a bijective proof of an identity relating primed shifted $gl( n)$-standard tableaux to the product of a $gl( n)$ character in the form of a Schur function and Õ $_{1 \sterling i j \sterling n} ( x _{ i} + y _{ j})$ prod_$1\leq $i j $\leq n$ (x_i + y_j). This result generalises a number of well-known results due to Robbins and Rumsey, Chapman, Tokuyama, Okada and Macdonald. An analogous result is then obtained in the case of primed shifted $s$p($2 n$)-standard tableaux which are bijectively related to the product of a $t$-deformed $s$p($2 n$) character and Õ $_{1 \sterling i j \sterling n}( x _{ i}+ t ^{2} x _{ i} ^{ -1}+ y _{ j}+ t ^{2} y _{ j} ^{ -1})$ prod_$1\leq $i j $\leq n$(x_i+t^2x_i^-1+y_j+t^2y_j^-1). All results are also interpreted in terms of alternating sign matrix (ASM) identities, including a result regarding subsets of ASMs specified by conditions on certain restricted column sums.
Keywords: keywords alternating sign matrices, shifted tableaux, Schur P-functions
@article{JAC_2007__25_4_a1,
     author = {Hamel, A.M. and King, R.C.},
     title = {Bijective proofs of shifted tableau and alternating sign matrix identities},
     journal = {Journal of Algebraic Combinatorics},
     pages = {417--458},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a1/}
}
TY  - JOUR
AU  - Hamel, A.M.
AU  - King, R.C.
TI  - Bijective proofs of shifted tableau and alternating sign matrix identities
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 417
EP  - 458
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a1/
LA  - en
ID  - JAC_2007__25_4_a1
ER  - 
%0 Journal Article
%A Hamel, A.M.
%A King, R.C.
%T Bijective proofs of shifted tableau and alternating sign matrix identities
%J Journal of Algebraic Combinatorics
%D 2007
%P 417-458
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a1/
%G en
%F JAC_2007__25_4_a1
Hamel, A.M.; King, R.C. Bijective proofs of shifted tableau and alternating sign matrix identities. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 4, pp. 417-458. http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a1/