Distance-regular graphs with complete multipartite $\mu$-graphs and AT4 family
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 4, pp. 459-471.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\Gamma $be an antipodal distance-regular graph of diameter 4, with eigenvalues $\theta_0>\theta_1>\theta_2>\theta_3>\theta_4$ theta_0>theta_1>theta_2>theta_3>theta_4. Then its Krein parameter $q _{11} ^{4}$ q_11^4 vanishes precisely when $\Gamma $is tight in the sense of Jurišić, Koolen and Terwilliger, and furthermore, precisely when $\Gamma $is locally strongly regular with nontrivial eigenvalues $p$:= q $_{2}$ p:=$\theta_2 $and - $q$:= q $_{3}$ -q:=theta_3. When this is the case, the intersection parameters of $\Gamma $can be parametrized by $p, q$ and the size of the antipodal classes $r$ of $\Gamma $. Let $\Gamma $be an antipodal tight graph of diameter 4, denoted by AT4 (p, q, r), and let the $\mu $-graph be a graph that is induced by the common neighbours of two vertices at distance 2. Then we show that all the $\mu $-graphs of $\Gamma $are complete multipartite if and only if $\Gamma $is $AT4( sq, q, q)$ for some natural number $s$. As a consequence, we derive new existence conditions for graphs of the AT4 family whose $\mu $-graphs are not complete multipartite. Another interesting application of our results is also that we were able to show that the $\mu $-graphs of a distance-regular graph with the same intersection array as the Patterson graph are the complete bipartite graph $K _{4,4}$.
Keywords: keywords distance-regular graphs, antipodal, tight, locally strongly regular, $\mu $-graphs, AT4 family
@article{JAC_2007__25_4_a0,
     author = {Juri\v{s}i\'c, Aleksandar and Koolen, Jack},
     title = {Distance-regular graphs with complete multipartite $\mu$-graphs and {AT4} family},
     journal = {Journal of Algebraic Combinatorics},
     pages = {459--471},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a0/}
}
TY  - JOUR
AU  - Jurišić, Aleksandar
AU  - Koolen, Jack
TI  - Distance-regular graphs with complete multipartite $\mu$-graphs and AT4 family
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 459
EP  - 471
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a0/
LA  - en
ID  - JAC_2007__25_4_a0
ER  - 
%0 Journal Article
%A Jurišić, Aleksandar
%A Koolen, Jack
%T Distance-regular graphs with complete multipartite $\mu$-graphs and AT4 family
%J Journal of Algebraic Combinatorics
%D 2007
%P 459-471
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a0/
%G en
%F JAC_2007__25_4_a0
Jurišić, Aleksandar; Koolen, Jack. Distance-regular graphs with complete multipartite $\mu$-graphs and AT4 family. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 4, pp. 459-471. http://geodesic.mathdoc.fr/item/JAC_2007__25_4_a0/