Root games on Grassmannians
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 239-258.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We recall the root game, introduced in [8], which gives a fairly powerful sufficient condition for non-vanishing of Schubert calculus on a generalised flag manifold $G/ B$. We show that it gives a necessary and sufficient rule for non-vanishing of Schubert calculus on Grassmannians. In particular, a Littlewood-Richardson number is non-zero if and only if it is possible to win the corresponding root game. More generally, the rule can be used to determine whether or not a product of several Schubert classes on $Gr _{ l }(\Bbb C ^{ n })$ is non-zero in a manifestly symmetric way. Finally, we give a geometric interpretation of root games for Grassmannian Schubert problems.
Keywords: keywords Schubert calculus, Littlewood-Richardson numbers, grassmannians
@article{JAC_2007__25_3_a4,
     author = {Purbhoo, Kevin},
     title = {Root games on {Grassmannians}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {239--258},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a4/}
}
TY  - JOUR
AU  - Purbhoo, Kevin
TI  - Root games on Grassmannians
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 239
EP  - 258
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a4/
LA  - en
ID  - JAC_2007__25_3_a4
ER  - 
%0 Journal Article
%A Purbhoo, Kevin
%T Root games on Grassmannians
%J Journal of Algebraic Combinatorics
%D 2007
%P 239-258
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a4/
%G en
%F JAC_2007__25_3_a4
Purbhoo, Kevin. Root games on Grassmannians. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 239-258. http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a4/