Regular Cayley maps for finite abelian groups
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 259-283.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A regular Cayley map for a finite group $A$ is an orientable map whose orientation-preserving automorphism group $G$ acts regularly on the directed edge set and has a subgroup isomorphic to $A$ that acts regularly on the vertex set. This paper considers the problem of determining which abelian groups have regular Cayley maps. The analysis is purely algebraic, involving the structure of the canonical form for $A$. The case when $A$ is normal in $G$ involves the relationship between the rank of $A$ and the exponent of the automorphism group of $A$, and the general case uses Ito's theorem to analyze the factorization $G = AY$, where $Y$ is the (cyclic) stabilizer of a vertex.
Keywords: keywords regular map, Cayley graph, abelian group
@article{JAC_2007__25_3_a3,
     author = {Conder, Marston and Jajcay, Robert and Tucker, Thomas},
     title = {Regular {Cayley} maps for finite abelian groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {259--283},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a3/}
}
TY  - JOUR
AU  - Conder, Marston
AU  - Jajcay, Robert
AU  - Tucker, Thomas
TI  - Regular Cayley maps for finite abelian groups
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 259
EP  - 283
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a3/
LA  - en
ID  - JAC_2007__25_3_a3
ER  - 
%0 Journal Article
%A Conder, Marston
%A Jajcay, Robert
%A Tucker, Thomas
%T Regular Cayley maps for finite abelian groups
%J Journal of Algebraic Combinatorics
%D 2007
%P 259-283
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a3/
%G en
%F JAC_2007__25_3_a3
Conder, Marston; Jajcay, Robert; Tucker, Thomas. Regular Cayley maps for finite abelian groups. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 259-283. http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a3/