Enriched homology and cohomology modules of simplicial complexes
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 285-307.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a simplicial complex $\Delta $on ${1, 2,\cdots , n}$ we define enriched homology and cohomology modules. They are graded modules over $k[ x _{1},\cdots , x _{ n }]$ whose ranks are equal to the dimensions of the reduced homology and cohomology groups. We characterize Cohen-Macaulay, $l$-Cohen-Macaulay, Buchsbaum, and Gorenstein ^* complexes $\Delta $, and also orientable homology manifolds in terms of the enriched modules. We introduce the notion of girth for simplicial complexes and make a conjecture relating the girth to invariants of the simplicial complex.
Keywords: keywords simplicial complex, homology, girth, Cohen-Macaulay, simplicial complex, block design, homology manifold, Steiner system
@article{JAC_2007__25_3_a2,
     author = {Fl{\o}ystad, Gunnar},
     title = {Enriched homology and cohomology modules of simplicial complexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {285--307},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a2/}
}
TY  - JOUR
AU  - Fløystad, Gunnar
TI  - Enriched homology and cohomology modules of simplicial complexes
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 285
EP  - 307
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a2/
LA  - en
ID  - JAC_2007__25_3_a2
ER  - 
%0 Journal Article
%A Fløystad, Gunnar
%T Enriched homology and cohomology modules of simplicial complexes
%J Journal of Algebraic Combinatorics
%D 2007
%P 285-307
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a2/
%G en
%F JAC_2007__25_3_a2
Fløystad, Gunnar. Enriched homology and cohomology modules of simplicial complexes. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 285-307. http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a2/