A note on quantum products of Schubert classes in a Grassmannian
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 349-356.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given two Schubert classes $\sigma _{\lambda }$ and $\sigma _{\mu }$ in the quantum cohomology of a Grassmannian, we construct a partition $\nu $, depending on $\lambda $and $\mu $, such that $\sigma _{\nu }$ appears with coefficient 1 in the lowest (or highest) degree part of the quantum product $\sigma _{\lambda }\bigstar \sigma _{\mu }$. To do this, we show that for any two partitions $\lambda $and $\mu $, contained in a $k \times $( n - k) rectangle and such that the $180 ^{\deg }$-rotation of one does not overlap the other, there is a third partition $\nu $, also contained in the rectangle, such that the Littlewood-Richardson number $c _{\lambda \mu } ^{\nu }$ is 1.
Keywords: keywords quantum cohomology, toric tableau, Littlewood-Richardson number
@article{JAC_2007__25_3_a0,
     author = {Anderson, Dave},
     title = {A note on quantum products of {Schubert} classes in a {Grassmannian}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {349--356},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a0/}
}
TY  - JOUR
AU  - Anderson, Dave
TI  - A note on quantum products of Schubert classes in a Grassmannian
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 349
EP  - 356
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a0/
LA  - en
ID  - JAC_2007__25_3_a0
ER  - 
%0 Journal Article
%A Anderson, Dave
%T A note on quantum products of Schubert classes in a Grassmannian
%J Journal of Algebraic Combinatorics
%D 2007
%P 349-356
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a0/
%G en
%F JAC_2007__25_3_a0
Anderson, Dave. A note on quantum products of Schubert classes in a Grassmannian. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 3, pp. 349-356. http://geodesic.mathdoc.fr/item/JAC_2007__25_3_a0/