Zonal polynomials for wreath products
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 2, pp. 189-215.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The pair of groups, symmetric group $S _{2 n }$ and hyperoctohedral group $H _{ n }$, form a Gelfand pair. The characteristic map is a mapping from the graded algebra generated by the zonal spherical functions of $( S _{2 n }, H _{ n })$ into the ring of symmetric functions. The images of the zonal spherical functions under this map are called the zonal polynomials. A wreath product generalization of the Gelfand pair $( S _{2 n }, H _{ n })$ is discussed in this paper. Then a multi-partition versions of the theory is constructed. The multi-partition version of zonal polynomials are products of zonal polynomials and Schur functions and are obtained from a characteristic map from the graded Hecke algebra into a multipartition version of the ring of symmetric functions.
Keywords: keywords zonal polynomial, Schur function, Gelfand pair, Hecke algebra, hypergeometric function
@article{JAC_2007__25_2_a2,
     author = {Mizukawa, Hiroshi},
     title = {Zonal polynomials for wreath products},
     journal = {Journal of Algebraic Combinatorics},
     pages = {189--215},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a2/}
}
TY  - JOUR
AU  - Mizukawa, Hiroshi
TI  - Zonal polynomials for wreath products
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 189
EP  - 215
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a2/
LA  - en
ID  - JAC_2007__25_2_a2
ER  - 
%0 Journal Article
%A Mizukawa, Hiroshi
%T Zonal polynomials for wreath products
%J Journal of Algebraic Combinatorics
%D 2007
%P 189-215
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a2/
%G en
%F JAC_2007__25_2_a2
Mizukawa, Hiroshi. Zonal polynomials for wreath products. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 2, pp. 189-215. http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a2/