Flocks of cones of higher degree
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 2, pp. 233-238.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is known that in $PG(3, q), q > 19$, a partial flock of a quadratic cone with $q-\epsilon $planes, can be extended to a unique flock if e $^{1}/ _{4}$ Ö $q \varepsilon {1\over 4}$sqrtq, and a similar and slightly stronger theorem holds for the case $q$ even. In this paper we prove the analogue of this result for cones with base curve of higher degree.
Keywords: keywords flock, cone
@article{JAC_2007__25_2_a0,
     author = {Sziklai, Peter},
     title = {Flocks of cones of higher degree},
     journal = {Journal of Algebraic Combinatorics},
     pages = {233--238},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a0/}
}
TY  - JOUR
AU  - Sziklai, Peter
TI  - Flocks of cones of higher degree
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 233
EP  - 238
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a0/
LA  - en
ID  - JAC_2007__25_2_a0
ER  - 
%0 Journal Article
%A Sziklai, Peter
%T Flocks of cones of higher degree
%J Journal of Algebraic Combinatorics
%D 2007
%P 233-238
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a0/
%G en
%F JAC_2007__25_2_a0
Sziklai, Peter. Flocks of cones of higher degree. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 2, pp. 233-238. http://geodesic.mathdoc.fr/item/JAC_2007__25_2_a0/