On the evaluation at $(j,j^2)$ of the Tutte polynomial of a ternary matroid
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: F. Jaeger has shown that up to a $\pm $sign the evaluation at $( j, j ^{2})$ of the Tutte polynomial of a ternary matroid can be expressed in terms of the dimension of the bicycle space of a representation over $GF(3)$. We give a short algebraic proof of this result, which moreover yields the exact value of $\pm $, a problem left open in Jaeger's paper. It follows that the computation of $t( j, j ^{2})$ is of polynomial complexity for a ternary matroid.
Keywords: keywords matroid, ternary matroid, tutte polynomial, graph, knot theory, Jones polynomial, computational complexity
@article{JAC_2007__25_1_a5,
     author = {Gioan, Emeric and Las Vergnas, Michel},
     title = {On the evaluation at $(j,j^2)$ of the {Tutte} polynomial of a ternary matroid},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a5/}
}
TY  - JOUR
AU  - Gioan, Emeric
AU  - Las Vergnas, Michel
TI  - On the evaluation at $(j,j^2)$ of the Tutte polynomial of a ternary matroid
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 1
EP  - 6
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a5/
LA  - en
ID  - JAC_2007__25_1_a5
ER  - 
%0 Journal Article
%A Gioan, Emeric
%A Las Vergnas, Michel
%T On the evaluation at $(j,j^2)$ of the Tutte polynomial of a ternary matroid
%J Journal of Algebraic Combinatorics
%D 2007
%P 1-6
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a5/
%G en
%F JAC_2007__25_1_a5
Gioan, Emeric; Las Vergnas, Michel. On the evaluation at $(j,j^2)$ of the Tutte polynomial of a ternary matroid. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a5/