On the VC-dimension of uniform hypergraphs
Journal of Algebraic Combinatorics, Tome 25 (2007) no. 1, pp. 101-110.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $F {\cal F}$ be a $k$-uniform hypergraph on $[ n]$ where $k - 1$ is a power of some prime $p$ and $n\geq n _{0}( k)$. Our main result says that if $|F|> ({n\atop k-1}) -\log_p n + k!k^k $ |F|> (n$\atop $k-1) -$\log_p n + k$!k^k , then there exists $E _{0}\epsilon F {\cal F}$ such that ${ E\cap E _{0}: E\epsilon F {\cal F}}$ contains all subsets of $E _{0}$. This improves a longstanding bound of ([$( n) || ( k -1)$]) (n$\atop $k-1) due to Frankl and Pach [7].
Keywords: keywords trace, hypergraph, VC-dimension, extremal problems
@article{JAC_2007__25_1_a0,
     author = {Mubayi, Dhruv and Zhao, Yi},
     title = {On the {VC-dimension} of uniform hypergraphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a0/}
}
TY  - JOUR
AU  - Mubayi, Dhruv
AU  - Zhao, Yi
TI  - On the VC-dimension of uniform hypergraphs
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 101
EP  - 110
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a0/
LA  - en
ID  - JAC_2007__25_1_a0
ER  - 
%0 Journal Article
%A Mubayi, Dhruv
%A Zhao, Yi
%T On the VC-dimension of uniform hypergraphs
%J Journal of Algebraic Combinatorics
%D 2007
%P 101-110
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a0/
%G en
%F JAC_2007__25_1_a0
Mubayi, Dhruv; Zhao, Yi. On the VC-dimension of uniform hypergraphs. Journal of Algebraic Combinatorics, Tome 25 (2007) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/JAC_2007__25_1_a0/