Arbitrary groups as two-point stabilisers of symmetric groups acting on partitions
Journal of Algebraic Combinatorics, Tome 24 (2006) no. 4, pp. 355-360.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a short, direct proof that given any finite group $G$ there exist positive integers $k$ and $l$ and partitions $\alpha _{1}$and $\alpha _{2}$ of ${1, \cdots , kl }$ into $l$ subsets of size $k$ such that $( S _{ kl }) _{\alpha } _{1}, _{\alpha } _{2}\cong G$. The method used will also show that given any finite group $G$ there exists a regular bipartite graph whose automorphism group is isomorphic to $G$
Keywords: keywords symmetric groups acting on partitions, regular bipartite graphs, two-point stabilisers
@article{JAC_2006__24_4_a4,
     author = {James, J.P.},
     title = {Arbitrary groups as two-point stabilisers of symmetric groups acting on partitions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {355--360},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a4/}
}
TY  - JOUR
AU  - James, J.P.
TI  - Arbitrary groups as two-point stabilisers of symmetric groups acting on partitions
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 355
EP  - 360
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a4/
LA  - en
ID  - JAC_2006__24_4_a4
ER  - 
%0 Journal Article
%A James, J.P.
%T Arbitrary groups as two-point stabilisers of symmetric groups acting on partitions
%J Journal of Algebraic Combinatorics
%D 2006
%P 355-360
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a4/
%G en
%F JAC_2006__24_4_a4
James, J.P. Arbitrary groups as two-point stabilisers of symmetric groups acting on partitions. Journal of Algebraic Combinatorics, Tome 24 (2006) no. 4, pp. 355-360. http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a4/