On antipodal Euclidean tight $(2e+1)$-designs
Journal of Algebraic Combinatorics, Tome 24 (2006) no. 4, pp. 391-414.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Neumaier and Seidel (1988) generalized the concept of spherical designs and defined Euclidean designs in $\Bbb R ^{ n }$. For an integer $t$, a finite subset $X$ of $\Bbb R ^{ n }$ given together with a weight function $w$ is a Euclidean $t$-design if $\sum_{i=1}^p\frac{w(X_i)}{|S_i|} \int_{S_i}f(\boldsymbol x)d\sigma_i(\boldsymbol x) =\sum_{\boldsymbol x\in X}w(\boldsymbol x) f(\boldsymbol x)$ sum_i=1^p$\frac{w(X_i)}$|S_i| int_S_i$f(\boldsymbol x)$d$sigma_i(boldsymbolx) =$\sum\_{$boldsymbolxin$X}$w(boldsymbolx) f(boldsymbolx)$ holds for any polynomial $f( x)$ of $deg( f)leqt$, where $ S _ i , 1leqi leqp$ is the set of all the concentric spheres centered at the origin that intersect with $X, X _ i = XcapS _ i $, and $w: XrightarrowBbbR _> 0$. (The case of $XsubsetS ^ n - 1$ with $wequiv1$ on $X$ corresponds to a spherical $t$-design.) In this paper we study antipodal Euclidean ($2 e+1$)-designs. We give some new examples of antipodal Euclidean tight 5-designs. We also give the classification of all antipodal Euclidean tight 3-designs, the classification of antipodal Euclidean tight 5-designs supported by 2 concentric spheres.$
Keywords: keywords Euclidean design, spherical design, 2-distance set, antipodal, tight design
@article{JAC_2006__24_4_a2,
     author = {Bannai, Etsuko},
     title = {On antipodal {Euclidean} tight $(2e+1)$-designs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {391--414},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a2/}
}
TY  - JOUR
AU  - Bannai, Etsuko
TI  - On antipodal Euclidean tight $(2e+1)$-designs
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 391
EP  - 414
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a2/
LA  - en
ID  - JAC_2006__24_4_a2
ER  - 
%0 Journal Article
%A Bannai, Etsuko
%T On antipodal Euclidean tight $(2e+1)$-designs
%J Journal of Algebraic Combinatorics
%D 2006
%P 391-414
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a2/
%G en
%F JAC_2006__24_4_a2
Bannai, Etsuko. On antipodal Euclidean tight $(2e+1)$-designs. Journal of Algebraic Combinatorics, Tome 24 (2006) no. 4, pp. 391-414. http://geodesic.mathdoc.fr/item/JAC_2006__24_4_a2/