Derivation modules of orthogonal duals of hyperplane arrangements
Journal of Algebraic Combinatorics, Tome 24 (2006) no. 3, pp. 253-262.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $A$ be an n $\times d$ matrix having full rank $n$. An orthogonal dual A $^{\perp }$ of $A$ is a (d-n) $\times d$ matrix of rank $( d - n)$ such that every row of A $^{\perp }$ is orthogonal (under the usual dot product) to every row of $A$. We define the orthogonal dual for arrangements by identifying an essential (central) arrangement of $d$ hyperplanes in $n$-dimensional space with the n $\times d$ matrix of coefficients of the homogeneous linear forms for which the hyperplanes are kernels. When n $\geq 5$, we show that if the matroid (or the lattice of intersection) of an $n$-dimensional essential arrangement $A {\mathcal A}$ contains a modular copoint whose complement spans, then the derivation module of the orthogonally dual arrangement $A {\mathcal A} ^{\perp }$ has projective dimension at least $\lceil n(n+2)/4 \rceil - 3$.
Keywords: keywords hyperplane arrangement, module of derivations, projective dimension, matroid, orthogonal duality
@article{JAC_2006__24_3_a5,
     author = {Kung, Joseph P.S. and Schenck, Hal},
     title = {Derivation modules of orthogonal duals of hyperplane arrangements},
     journal = {Journal of Algebraic Combinatorics},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a5/}
}
TY  - JOUR
AU  - Kung, Joseph P.S.
AU  - Schenck, Hal
TI  - Derivation modules of orthogonal duals of hyperplane arrangements
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 253
EP  - 262
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a5/
LA  - en
ID  - JAC_2006__24_3_a5
ER  - 
%0 Journal Article
%A Kung, Joseph P.S.
%A Schenck, Hal
%T Derivation modules of orthogonal duals of hyperplane arrangements
%J Journal of Algebraic Combinatorics
%D 2006
%P 253-262
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a5/
%G en
%F JAC_2006__24_3_a5
Kung, Joseph P.S.; Schenck, Hal. Derivation modules of orthogonal duals of hyperplane arrangements. Journal of Algebraic Combinatorics, Tome 24 (2006) no. 3, pp. 253-262. http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a5/