Partial geometries $\bold{pg}(s,t,\bold 2$) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry
Journal of Algebraic Combinatorics, Tome 24 (2006) no. 3, pp. 285-297.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $S$ mathcalS be a proper partial geometry $pg( s, t,2)$, and let $G$ be an abelian group of automorphisms of $S$ mathcalS acting regularly on the points of $S$ mathcalS. Then either $t\equiv 2\pm od s+1$ or $S$ mathcalS is a $pg(5,5,2)$ isomorphic to the partial geometry of van Lint and Schrijver (Combinatorica 1 (1981), 63-73). This result is a new step towards the classification of partial geometries with an abelian Singer group and further provides an interesting characterization of the geometry of van Lint and Schrijver.
Keywords: keywords partial geometry, abelian singer group, geometry of Van lint-schrijver
@article{JAC_2006__24_3_a3,
     author = {De Winter, S.},
     title = {Partial geometries $\bold{pg}(s,t,\bold 2$) with an abelian {Singer} group and a characterization of the van {Lint-Schrijver} partial geometry},
     journal = {Journal of Algebraic Combinatorics},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a3/}
}
TY  - JOUR
AU  - De Winter, S.
TI  - Partial geometries $\bold{pg}(s,t,\bold 2$) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 285
EP  - 297
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a3/
LA  - en
ID  - JAC_2006__24_3_a3
ER  - 
%0 Journal Article
%A De Winter, S.
%T Partial geometries $\bold{pg}(s,t,\bold 2$) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry
%J Journal of Algebraic Combinatorics
%D 2006
%P 285-297
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a3/
%G en
%F JAC_2006__24_3_a3
De Winter, S. Partial geometries $\bold{pg}(s,t,\bold 2$) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry. Journal of Algebraic Combinatorics, Tome 24 (2006) no. 3, pp. 285-297. http://geodesic.mathdoc.fr/item/JAC_2006__24_3_a3/