Structure and automorphism groups of Hadamard designs
Journal of Algebraic Combinatorics, Tome 24 (2006) no. 2, pp. 137-155.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $n$ be the order of a Hadamard design, and $G$ any finite group. Then there exists many non-isomorphic Hadamard designs of order $2 ^{12|G| + 13} n$ with automorphism group isomorphic to $G$.
Keywords: keywords Hadamard designs, automorphisms of designs
@article{JAC_2006__24_2_a3,
     author = {Merchant, Eric},
     title = {Structure and automorphism groups of {Hadamard} designs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__24_2_a3/}
}
TY  - JOUR
AU  - Merchant, Eric
TI  - Structure and automorphism groups of Hadamard designs
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 137
EP  - 155
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__24_2_a3/
LA  - en
ID  - JAC_2006__24_2_a3
ER  - 
%0 Journal Article
%A Merchant, Eric
%T Structure and automorphism groups of Hadamard designs
%J Journal of Algebraic Combinatorics
%D 2006
%P 137-155
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__24_2_a3/
%G en
%F JAC_2006__24_2_a3
Merchant, Eric. Structure and automorphism groups of Hadamard designs. Journal of Algebraic Combinatorics, Tome 24 (2006) no. 2, pp. 137-155. http://geodesic.mathdoc.fr/item/JAC_2006__24_2_a3/