On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements.
Journal of Algebraic Combinatorics, Tome 23 (2006) no. 4, pp. 355-375.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\Phi $be an irreducible crystallographic root system with Weyl group $W$ and coroot lattice $\check Q$ checkQ , spanning a Euclidean space $V$. Let $m$ be a positive integer and $A ^{ m} _{ F} {\mathcal A}$^m_Phi be the arrangement of hyperplanes in $V$ of the form $( a, x) = k$ (alpha, x) = k for a Ĩ F $\alpha \in \Phi $and $k = 0, 1,\dots , m$ k = 0, 1,…,m . It is known that the number $N ^{+} ( F, m)$ N^+ (Phi, m) of bounded dominant regions of $A ^{ m} _{ F} {\mathcal A}$^m_Phi is equal to the number of facets of the positive part D $^{ m} _{+}$ ( F) Delta^m_+ (Phi) of the generalized cluster complex associated to the pair $( F, m)$ (Phi, m) by S. Fomin and N. Reading. We define a statistic on the set of bounded dominant regions of $A ^{ m} _{ F} {\mathcal A}$^m_Phi and conjecture that the corresponding refinement of $N ^{+} ( F, m)$ N^+ (Phi, m) coincides with the $h$ h-vector of D $^{ m} _{+}$ ( F) Delta^m_+ (Phi) . We compute these refined numbers for the classical root systems as well as for all root systems when $m = 1$ and verify the conjecture when $\Phi $has type $A, B$ or $C$ and when $m = 1$. We give several combinatorial interpretations to these numbers in terms of chains of order ideals in the root poset of $\Phi $, orbits of the action of $W$ on the quotient $\check Q / ( mh -1) \check Q$ checkQ /   (mh-1)   checkQ and coroot lattice points inside a certain simplex, analogous to the ones given by the first author in the case of the set of all dominant regions of $A ^{ m} _{ F} {\mathcal A}$^m_Phi . We also provide a dual interpretation in terms of order filters in the root poset of $\Phi $in the special case $m = 1$.
Classification : 20F55;, Secondary-05E99,, 20H15, C
Keywords: keywords Catalan arrangement, bounded region, generalized cluster complex, positive part, $h$-vector
@article{JAC_2006__23_4_a2,
     author = {Athanasiadis, Christos A. and Tzanaki, Eleni},
     title = {On the enumeration of positive cells in generalized cluster complexes and {Catalan} hyperplane arrangements.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {355--375},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a2/}
}
TY  - JOUR
AU  - Athanasiadis, Christos A.
AU  - Tzanaki, Eleni
TI  - On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements.
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 355
EP  - 375
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a2/
LA  - en
ID  - JAC_2006__23_4_a2
ER  - 
%0 Journal Article
%A Athanasiadis, Christos A.
%A Tzanaki, Eleni
%T On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements.
%J Journal of Algebraic Combinatorics
%D 2006
%P 355-375
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a2/
%G en
%F JAC_2006__23_4_a2
Athanasiadis, Christos A.; Tzanaki, Eleni. On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements.. Journal of Algebraic Combinatorics, Tome 23 (2006) no. 4, pp. 355-375. http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a2/