Table algebras with multiple P-polynomial structures
Journal of Algebraic Combinatorics, Tome 23 (2006) no. 4, pp. 377-393.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using covering numbers we prove that a standard real integral table algebra (A, B) with | B| $\geq 6$ has a P-polynomial structure with respect to every $b \neq 1$ in B if and only if 2| B|-1 is prime and $( A, B)$ is exactly isomorphic to the Bose-Mesner algebra of the association scheme of the ordinary (2| B|-1)-gon. Then we present an example showing that this result is not true if | B| $\leq 5$.
Keywords: keywords table algebras, covering numbers, association schemes, Bose-mesner algebras, P-polynomial structures
@article{JAC_2006__23_4_a1,
     author = {Xu, Bangteng},
     title = {Table algebras with multiple {P-polynomial} structures},
     journal = {Journal of Algebraic Combinatorics},
     pages = {377--393},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a1/}
}
TY  - JOUR
AU  - Xu, Bangteng
TI  - Table algebras with multiple P-polynomial structures
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 377
EP  - 393
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a1/
LA  - en
ID  - JAC_2006__23_4_a1
ER  - 
%0 Journal Article
%A Xu, Bangteng
%T Table algebras with multiple P-polynomial structures
%J Journal of Algebraic Combinatorics
%D 2006
%P 377-393
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a1/
%G en
%F JAC_2006__23_4_a1
Xu, Bangteng. Table algebras with multiple P-polynomial structures. Journal of Algebraic Combinatorics, Tome 23 (2006) no. 4, pp. 377-393. http://geodesic.mathdoc.fr/item/JAC_2006__23_4_a1/