A basis for the non-crossing partition lattice top homology
Journal of Algebraic Combinatorics, Tome 23 (2006) no. 3, pp. 231-242.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We find a basis for the top homology of the non-crossing partition lattice $T _{ n}$. Though $T _{ n}$ is not a geometric lattice, we are able to adapt techniques of Björner (A. Björner, On the homology of geometric lattices. Algebra Universalis 14 (1982), no. 1, 107-128) to find a basis with $C _{ n - 1}$ elements that are in bijection with binary trees. Then we analyze the action of the dihedral group on this basis.
Keywords: keywords non-crossing partition, binary trees, homology group, Catalan numbers, representation matrix, dihedral group, stack-sortable permutations
@article{JAC_2006__23_3_a2,
     author = {Zoque, Eliana},
     title = {A basis for the non-crossing partition lattice top homology},
     journal = {Journal of Algebraic Combinatorics},
     pages = {231--242},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a2/}
}
TY  - JOUR
AU  - Zoque, Eliana
TI  - A basis for the non-crossing partition lattice top homology
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 231
EP  - 242
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a2/
LA  - en
ID  - JAC_2006__23_3_a2
ER  - 
%0 Journal Article
%A Zoque, Eliana
%T A basis for the non-crossing partition lattice top homology
%J Journal of Algebraic Combinatorics
%D 2006
%P 231-242
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a2/
%G en
%F JAC_2006__23_3_a2
Zoque, Eliana. A basis for the non-crossing partition lattice top homology. Journal of Algebraic Combinatorics, Tome 23 (2006) no. 3, pp. 231-242. http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a2/