On the graph of a function in two variables over a finite field
Journal of Algebraic Combinatorics, Tome 23 (2006) no. 3, pp. 243-253.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that if the number of directions not determined by a pointset $W$ mathcalW of $AG(3, q), q= p ^{ h}$ mathrmAG(3,q), q=p^h , of size $q ^{2}$ is at least $p ^{ e} q$ then every plane intersects $W$ mathcalW in 0 modulo $p ^{ e+1}$ points and apply the result to ovoids of the generalised quadrangles $T _{2}( O) T_2({\cal O})$ and $T _{2} ^{*}( H)$ T_2^*($\cal H$) .
Keywords: keywords directions determined by a function, directions determined by a set, generalised quadrangles, ovoids
@article{JAC_2006__23_3_a1,
     author = {Ball, Simeon and Lavrauw, Michel},
     title = {On the graph of a function in two variables over a finite field},
     journal = {Journal of Algebraic Combinatorics},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a1/}
}
TY  - JOUR
AU  - Ball, Simeon
AU  - Lavrauw, Michel
TI  - On the graph of a function in two variables over a finite field
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 243
EP  - 253
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a1/
LA  - en
ID  - JAC_2006__23_3_a1
ER  - 
%0 Journal Article
%A Ball, Simeon
%A Lavrauw, Michel
%T On the graph of a function in two variables over a finite field
%J Journal of Algebraic Combinatorics
%D 2006
%P 243-253
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a1/
%G en
%F JAC_2006__23_3_a1
Ball, Simeon; Lavrauw, Michel. On the graph of a function in two variables over a finite field. Journal of Algebraic Combinatorics, Tome 23 (2006) no. 3, pp. 243-253. http://geodesic.mathdoc.fr/item/JAC_2006__23_3_a1/