Toric initial ideals of $\Delta$-normal configurations: Cohen-Macaulayness and degree bounds
Journal of Algebraic Combinatorics, Tome 21 (2005) no. 3, pp. 247-268.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A normal (respectively, graded normal) vector configuration $A {\cal A}$ defines the toric ideal $I _{ A}$ I_calA of a normal (respectively, projectively normal) toric variety. These ideals are Cohen-Macaulay, and when $A {\cal A}$ is normal and graded, $I _{ A}$ I_calA is generated in degree at most the dimension of $I _{ A}$ I_calA . Based on this, Sturmfels asked if these properties extend to initial ideals-when $A {\cal A}$ is normal, is there an initial ideal of $I _{ A}$ I_calA that is Cohen-Macaulay, and when $A {\cal A}$ is normal and graded, does $I _{ A}$ I_calA have a Gröbner basis generated in degree at most $dim( I _{ A}$ I_calA ) ? In this paper, we answer both questions positively for $Delta$-normal configurations. These are normal configurations that admit a regular triangulation $Delta$ with the property that the subconfiguration in each cell of the triangulation is again normal. Such configurations properly contain among them all vector configurations that admit a regular unimodular triangulation. We construct non-trivial families of both $Delta$-normal and non- $Delta$-normal configurations.
Keywords: key words toric ideals, triangulations, Hilbert bases, Gröbner bases
@article{JAC_2005__21_3_a6,
     author = {O'Shea, Edwin and Thomas, Rekha R.},
     title = {Toric initial ideals of $\Delta$-normal configurations: {Cohen-Macaulayness} and degree bounds},
     journal = {Journal of Algebraic Combinatorics},
     pages = {247--268},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a6/}
}
TY  - JOUR
AU  - O'Shea, Edwin
AU  - Thomas, Rekha R.
TI  - Toric initial ideals of $\Delta$-normal configurations: Cohen-Macaulayness and degree bounds
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 247
EP  - 268
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a6/
LA  - en
ID  - JAC_2005__21_3_a6
ER  - 
%0 Journal Article
%A O'Shea, Edwin
%A Thomas, Rekha R.
%T Toric initial ideals of $\Delta$-normal configurations: Cohen-Macaulayness and degree bounds
%J Journal of Algebraic Combinatorics
%D 2005
%P 247-268
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a6/
%G en
%F JAC_2005__21_3_a6
O'Shea, Edwin; Thomas, Rekha R. Toric initial ideals of $\Delta$-normal configurations: Cohen-Macaulayness and degree bounds. Journal of Algebraic Combinatorics, Tome 21 (2005) no. 3, pp. 247-268. http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a6/