The topology of the coloring complex
Journal of Algebraic Combinatorics, Tome 21 (2005) no. 3, pp. 311-329.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a recent paper, E. Steingrímsson associated to each simple graph $G$ a simplicial complex $Delta_{ G}$, referred to as the coloring complex of $G$. Certain nonfaces of $Delta_{ G}$ correspond in a natural manner to proper colorings of $G$. Indeed, the $h$-vector is an affine transformation of the chromatic polynomial $chi_{ G}$ of $G$, and the reduced Euler characteristic is, up to sign, equal to | $chi_{ G}$(-1)|-1. We show that $Delta_{ G}$ is constructible and hence Cohen-Macaulay. Moreover, we introduce two subcomplexes of the coloring complex, referred to as $polar$ coloring complexes. The $h$-vectors of these complexes are again affine transformations of $chi_{ G}$, and their Euler characteristics coincide with $chiprime_{ G}(0)$ and - $chiprime_{ G}(1)$, respectively. We show for a large class of graphs-including all connected graphs-that polar coloring complexes are constructible. Finally, the coloring complex and its polar subcomplexes being Cohen-Macaulay allows for topological interpretations of certain positivity results about the chromatic polynomial due to N. Linial and I. M. Gessel.
Keywords: key words topological combinatorics, constructible complex, Cohen-Macaulay complex, chromatic polynomial
@article{JAC_2005__21_3_a2,
     author = {Jonsson, Jakob},
     title = {The topology of the coloring complex},
     journal = {Journal of Algebraic Combinatorics},
     pages = {311--329},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a2/}
}
TY  - JOUR
AU  - Jonsson, Jakob
TI  - The topology of the coloring complex
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 311
EP  - 329
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a2/
LA  - en
ID  - JAC_2005__21_3_a2
ER  - 
%0 Journal Article
%A Jonsson, Jakob
%T The topology of the coloring complex
%J Journal of Algebraic Combinatorics
%D 2005
%P 311-329
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a2/
%G en
%F JAC_2005__21_3_a2
Jonsson, Jakob. The topology of the coloring complex. Journal of Algebraic Combinatorics, Tome 21 (2005) no. 3, pp. 311-329. http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a2/