The combinatorial quantum cohomology ring of $G/B$
Journal of Algebraic Combinatorics, Tome 21 (2005) no. 3, pp. 331-349.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A purely combinatorial construction of the quantum cohomology ring of the generalized flag manifold is presented. We show that the ring we construct is commutative, associative and satisfies the usual grading condition. By using results of our previous papers [12, 13], we obtain a presentation of this ring in terms of generators and relations, and formulas for quantum Giambelli polynomials. We show that these polynomials satisfy a certain orthogonality property, which-for $G = SL _{ n}( C {\cal C} )$-was proved previously in the paper [5].
Keywords: key words generalized flag manifolds, quantum cohomology, quantum Chevalley formula, quantum giambelli problem
@article{JAC_2005__21_3_a1,
     author = {Mare, Augustin-Liviu},
     title = {The combinatorial quantum cohomology ring of $G/B$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {331--349},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a1/}
}
TY  - JOUR
AU  - Mare, Augustin-Liviu
TI  - The combinatorial quantum cohomology ring of $G/B$
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 331
EP  - 349
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a1/
LA  - en
ID  - JAC_2005__21_3_a1
ER  - 
%0 Journal Article
%A Mare, Augustin-Liviu
%T The combinatorial quantum cohomology ring of $G/B$
%J Journal of Algebraic Combinatorics
%D 2005
%P 331-349
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a1/
%G en
%F JAC_2005__21_3_a1
Mare, Augustin-Liviu. The combinatorial quantum cohomology ring of $G/B$. Journal of Algebraic Combinatorics, Tome 21 (2005) no. 3, pp. 331-349. http://geodesic.mathdoc.fr/item/JAC_2005__21_3_a1/