Permutation groups with a cyclic regular subgroup and arc transitive circulants.
Journal of Algebraic Combinatorics, Tome 21 (2005) no. 2, pp. 131-136.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A description is given of finite permutation groups containing a cyclic regular subgroup. It is then applied to derive a classification of arc transitive circulants, completing the work dating from 1970 S[[ `$( K)] _{ b}] \Sigma [{\bar K}$_b] , a deleted lexicographic product S[[ `$( K)] _{ b}] - b$ S $\Sigma [{\bar K}$_b] - b$\Sigma $, where $Sgr$ is a smaller arc transitive circulant, or $Gamma$ is a normal circulant, that is, Auta $Gamma$ has a normal cyclic regular subgroup. The description of this class of permutation groups is also used to describe the class of rotary Cayley maps in subsequent work.
Classification : 20B15,, 20B30,, 05C25
Keywords: keywords cyclic regular subgroup, arc transitive circulant
@article{JAC_2005__21_2_a5,
     author = {Li, Cai Heng},
     title = {Permutation groups with a cyclic regular subgroup and arc transitive circulants.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {131--136},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a5/}
}
TY  - JOUR
AU  - Li, Cai Heng
TI  - Permutation groups with a cyclic regular subgroup and arc transitive circulants.
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 131
EP  - 136
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a5/
LA  - en
ID  - JAC_2005__21_2_a5
ER  - 
%0 Journal Article
%A Li, Cai Heng
%T Permutation groups with a cyclic regular subgroup and arc transitive circulants.
%J Journal of Algebraic Combinatorics
%D 2005
%P 131-136
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a5/
%G en
%F JAC_2005__21_2_a5
Li, Cai Heng. Permutation groups with a cyclic regular subgroup and arc transitive circulants.. Journal of Algebraic Combinatorics, Tome 21 (2005) no. 2, pp. 131-136. http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a5/