Conditions for singular incidence matrices
Journal of Algebraic Combinatorics, Tome 21 (2005) no. 2, pp. 179-183.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose one looks for a square integral matrix $N$, for which $NN _{T}$ has a prescribed form. Then the Hasse-Minkowski invariants and the determinant of $NN _{T}$ lead to necessary conditions for existence. The Bruck-Ryser-Chowla theorem gives a famous example of such conditions in case $N$ is the incidence matrix of a square block design. This approach fails when $N$ is singular. In this paper it is shown that in some cases conditions can still be obtained if the kernels of $N$ and $N _{T}$ are known, or known to be rationally equivalent. This leads for example to non-existence conditions for self-dual generalised polygons, semi-regular square divisible designs and distance-regular graphs.
Keywords: keywords incidence matrix, bruck-Ryser-chowla theorem, generalised polygon, divisible design, distance-regular graph
@article{JAC_2005__21_2_a1,
     author = {Haemers, Willem H.},
     title = {Conditions for singular incidence matrices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {179--183},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a1/}
}
TY  - JOUR
AU  - Haemers, Willem H.
TI  - Conditions for singular incidence matrices
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 179
EP  - 183
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a1/
LA  - en
ID  - JAC_2005__21_2_a1
ER  - 
%0 Journal Article
%A Haemers, Willem H.
%T Conditions for singular incidence matrices
%J Journal of Algebraic Combinatorics
%D 2005
%P 179-183
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a1/
%G en
%F JAC_2005__21_2_a1
Haemers, Willem H. Conditions for singular incidence matrices. Journal of Algebraic Combinatorics, Tome 21 (2005) no. 2, pp. 179-183. http://geodesic.mathdoc.fr/item/JAC_2005__21_2_a1/