Bruhat order for two flags and a line
Journal of Algebraic Combinatorics, Tome 21 (2005) no. 1, pp. 71-101.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The classical Ehresmann-Bruhat order describes the possible degenerations of a pair of flags in a linear space $V$ under linear transformations of $V$; or equivalently, it describes the closure of an orbit of $GL( V$ acting diagonally on the product of two flag varieties. We consider the degenerations of a triple consisting of two flags and a line, or equivalently the closure of an orbit of $GL( V)$ acting diagonally on the product of two flag varieties and a projective space. We give a simple rank criterion to decide whether one triple can degenerate to another. We also classify the minimal degenerations, which involve not only reflections (i.e., transpositions) in the Weyl group $S _{ VS} n = dim( V$, but also cycles of arbitrary length. Our proofs use only elementary linear algebra and combinatorics.
Keywords: keywords quiver representations, multiple flags, degeneration, geometric order
@article{JAC_2005__21_1_a0,
     author = {Magyar, Peter},
     title = {Bruhat order for two flags and a line},
     journal = {Journal of Algebraic Combinatorics},
     pages = {71--101},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2005__21_1_a0/}
}
TY  - JOUR
AU  - Magyar, Peter
TI  - Bruhat order for two flags and a line
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 71
EP  - 101
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2005__21_1_a0/
LA  - en
ID  - JAC_2005__21_1_a0
ER  - 
%0 Journal Article
%A Magyar, Peter
%T Bruhat order for two flags and a line
%J Journal of Algebraic Combinatorics
%D 2005
%P 71-101
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2005__21_1_a0/
%G en
%F JAC_2005__21_1_a0
Magyar, Peter. Bruhat order for two flags and a line. Journal of Algebraic Combinatorics, Tome 21 (2005) no. 1, pp. 71-101. http://geodesic.mathdoc.fr/item/JAC_2005__21_1_a0/