The number of terms in the permanent and the determinant of a generic circulant matrix
Journal of Algebraic Combinatorics, Tome 20 (2004) no. 1, pp. 55-60.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $A = ( a _{ij})$ be the generic $n \times n$ circulant matrix given by $a _{ij} = x _{ i + j }$, with subscripts on $x$ interpreted mod $n$. Define $d( n)$ (resp. $p( n))$ to be the number of terms in the determinant (resp. permanent) of $A$. The function $p( n)$ is well-known and has several combinatorial interpretations. The function $d( n)$, on the other hand, has not been studied previously. We show that when $n$ is a prime power, $d( n) = p( n)$.
Keywords: generic circulant matrix, determinant, permanent
@article{JAC_2004__20_1_a3,
     author = {Thomas, Hugh},
     title = {The number of terms in the permanent and the determinant of a generic circulant matrix},
     journal = {Journal of Algebraic Combinatorics},
     pages = {55--60},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a3/}
}
TY  - JOUR
AU  - Thomas, Hugh
TI  - The number of terms in the permanent and the determinant of a generic circulant matrix
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 55
EP  - 60
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a3/
LA  - en
ID  - JAC_2004__20_1_a3
ER  - 
%0 Journal Article
%A Thomas, Hugh
%T The number of terms in the permanent and the determinant of a generic circulant matrix
%J Journal of Algebraic Combinatorics
%D 2004
%P 55-60
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a3/
%G en
%F JAC_2004__20_1_a3
Thomas, Hugh. The number of terms in the permanent and the determinant of a generic circulant matrix. Journal of Algebraic Combinatorics, Tome 20 (2004) no. 1, pp. 55-60. http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a3/