The Hodge structure on a filtered Boolean algebra
Journal of Algebraic Combinatorics, Tome 20 (2004) no. 1, pp. 61-70.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $Delta( B _{n})$ be the order complex of the Boolean algebra and let $B( n, k)$ be the part of $Delta( B _{n})$ where all chains have a gap at most $k$ between each set. We give an action of the symmetric group $S _{l}$ on the $l$-chains that gives $B( n, k)$ a Hodge structure and decomposes the homology under the action of the Eulerian idempontents. The $S _{n}$ action on the chains induces an action on the Hodge pieces and we derive a generating function for the cycle indicator of the Hodge pieces. The Euler characteristic is given as a corollary. We then exploit the connection between chains and tabloids to give various special cases of the homology. Also an upper bound is obtained using spectral sequence methods.
Keywords: Hodge structure, Boolean algebra, Euler characteristics
@article{JAC_2004__20_1_a2,
     author = {Kravitz, Scott},
     title = {The {Hodge} structure on a filtered {Boolean} algebra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a2/}
}
TY  - JOUR
AU  - Kravitz, Scott
TI  - The Hodge structure on a filtered Boolean algebra
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 61
EP  - 70
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a2/
LA  - en
ID  - JAC_2004__20_1_a2
ER  - 
%0 Journal Article
%A Kravitz, Scott
%T The Hodge structure on a filtered Boolean algebra
%J Journal of Algebraic Combinatorics
%D 2004
%P 61-70
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a2/
%G en
%F JAC_2004__20_1_a2
Kravitz, Scott. The Hodge structure on a filtered Boolean algebra. Journal of Algebraic Combinatorics, Tome 20 (2004) no. 1, pp. 61-70. http://geodesic.mathdoc.fr/item/JAC_2004__20_1_a2/