Homogeneity of a distance-regular graph which supports a spin model
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 3, pp. 257-272.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A spin model is a square matrix that encodes the basic data for a statistical mechanical construction of link invariants due to V.F.R. Jones. Every spin model $W$ is contained in a canonical Bose-Mesner algebra $N$ mathcalN $( W)$. In this paper we study the distance-regular graphs $M$ mathcalM satisfies $W M$ mathcalM $N$ mathcalN $( W)$. Suppose $W$ has at least three distinct entries. We show that $Gamma$ is 1-homogeneous and that the first and the last subconstituents of $Gamma$ are strongly regular and distance-regular, respectively.
Keywords: distance-regular graph, 1-homogeneous, spin model
@article{JAC_2004__19_3_a3,
     author = {Curtin, Brian and Nomura, Kazumasa},
     title = {Homogeneity of a distance-regular graph which supports a spin model},
     journal = {Journal of Algebraic Combinatorics},
     pages = {257--272},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a3/}
}
TY  - JOUR
AU  - Curtin, Brian
AU  - Nomura, Kazumasa
TI  - Homogeneity of a distance-regular graph which supports a spin model
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 257
EP  - 272
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a3/
LA  - en
ID  - JAC_2004__19_3_a3
ER  - 
%0 Journal Article
%A Curtin, Brian
%A Nomura, Kazumasa
%T Homogeneity of a distance-regular graph which supports a spin model
%J Journal of Algebraic Combinatorics
%D 2004
%P 257-272
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a3/
%G en
%F JAC_2004__19_3_a3
Curtin, Brian; Nomura, Kazumasa. Homogeneity of a distance-regular graph which supports a spin model. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 3, pp. 257-272. http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a3/