On the location of roots of independence polynomials
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 3, pp. 273-282.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The independence polynomial of a graph $G$ is the function $i( G, x) = sum_{ $kge$0}$ i $\_{k}$ x $^{k}$, where i $\_{k}$ is the number of independent sets of vertices in $G$ of cardinality $k$. We prove that real roots of independence polynomials are dense in (- $infin$, 0], while complex roots are dense in $Copf$, even when restricting to well covered or comparability graphs. Throughout, we exploit the fact that independence polynomials are essentially closed under graph composition.
Keywords: graph, independence, polynomial, roots
@article{JAC_2004__19_3_a2,
     author = {Brown, J.I. and Hickman, C.A. and Nowakowski, R.J.},
     title = {On the location of roots of independence polynomials},
     journal = {Journal of Algebraic Combinatorics},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a2/}
}
TY  - JOUR
AU  - Brown, J.I.
AU  - Hickman, C.A.
AU  - Nowakowski, R.J.
TI  - On the location of roots of independence polynomials
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 273
EP  - 282
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a2/
LA  - en
ID  - JAC_2004__19_3_a2
ER  - 
%0 Journal Article
%A Brown, J.I.
%A Hickman, C.A.
%A Nowakowski, R.J.
%T On the location of roots of independence polynomials
%J Journal of Algebraic Combinatorics
%D 2004
%P 273-282
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a2/
%G en
%F JAC_2004__19_3_a2
Brown, J.I.; Hickman, C.A.; Nowakowski, R.J. On the location of roots of independence polynomials. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 3, pp. 273-282. http://geodesic.mathdoc.fr/item/JAC_2004__19_3_a2/