An inequality involving the local eigenvalues of a distance-regular graph
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 2, pp. 143-172.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\mathbb R$ mathbbR [ [$( h)$tilde] $\tilde \eta = -1 - b _{1}(1+ \mathbb C$ mathbbC ) generated by $A, E* _{0}, E* _{1}, \dots , E* _{ D }$, where $A$ denotes the adjacency matrix of $Gamma$ and $E* _{ i }$ denotes the projection onto the $i$th subconstituent of $Gamma$ with respect to $X. T$ is called the subconstituent algebra or the Terwilliger algebra. An irreducible $T$-module $W$ is said to be $thin$ whenever dim $E* _{ i } Wle$ 1 for 0 $le$ i $leD$. By the $endpoint$ of $W$ we mean min${ i| E* _{ i } Wne$ 0. We show the following are equivalent: (i) Equality holds in the above inequality for 1 $leileD - 1$; (ii) Equality holds in the above inequality for $i = D - 1$; (iii) Every irreducible $T$-module with endpoint 1 is thin.
Classification : Primary, 05E30;, Secondary, 05E35,, 05C50
Keywords: distance-regular graph, association scheme, Terwilliger algebra, subconstituent algebra
@article{JAC_2004__19_2_a3,
     author = {Terwilliger, Paul},
     title = {An inequality involving the local eigenvalues of a distance-regular graph},
     journal = {Journal of Algebraic Combinatorics},
     pages = {143--172},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a3/}
}
TY  - JOUR
AU  - Terwilliger, Paul
TI  - An inequality involving the local eigenvalues of a distance-regular graph
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 143
EP  - 172
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a3/
LA  - en
ID  - JAC_2004__19_2_a3
ER  - 
%0 Journal Article
%A Terwilliger, Paul
%T An inequality involving the local eigenvalues of a distance-regular graph
%J Journal of Algebraic Combinatorics
%D 2004
%P 143-172
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a3/
%G en
%F JAC_2004__19_2_a3
Terwilliger, Paul. An inequality involving the local eigenvalues of a distance-regular graph. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 2, pp. 143-172. http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a3/