Acyclic heaps of pieces. I.
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 2, pp. 173-196.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Heaps of pieces were introduced by Viennot and have applications to algebraic combinatorics, theoretical computer science and statistical physics. In this paper, we show how certain combinatorial properties of heaps studied by Fan and by Stembridge are closely related to the properties of a certain linear map $part_{ E }$ associated to a heap $E$. We examine the relationship between $part_{ E }$ and $part_{ F }$ when $F$ is a subheap of $E$. This approach allows neat statements and proofs of results on certain associative algebras (generalized Temperley-Lieb algebras) that are otherwise tricky to prove. The key to the proof is to interpret the structure constants of the aforementioned algebras in terms of the maps $part$.
Classification : 06A11
Keywords: heaps of pieces, temperley-Lieb algebras
@article{JAC_2004__19_2_a2,
     author = {Green, R.M.},
     title = {Acyclic heaps of pieces. {I.}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {173--196},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a2/}
}
TY  - JOUR
AU  - Green, R.M.
TI  - Acyclic heaps of pieces. I.
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 173
EP  - 196
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a2/
LA  - en
ID  - JAC_2004__19_2_a2
ER  - 
%0 Journal Article
%A Green, R.M.
%T Acyclic heaps of pieces. I.
%J Journal of Algebraic Combinatorics
%D 2004
%P 173-196
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a2/
%G en
%F JAC_2004__19_2_a2
Green, R.M. Acyclic heaps of pieces. I.. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 2, pp. 173-196. http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a2/