There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 2, pp. 205-217.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove that there are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10.
Keywords: distance-regular graphs, bannai-Itô conjecture
@article{JAC_2004__19_2_a0,
     author = {Koolen, J.H. and Moulton, V.},
     title = {There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10},
     journal = {Journal of Algebraic Combinatorics},
     pages = {205--217},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a0/}
}
TY  - JOUR
AU  - Koolen, J.H.
AU  - Moulton, V.
TI  - There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 205
EP  - 217
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a0/
LA  - en
ID  - JAC_2004__19_2_a0
ER  - 
%0 Journal Article
%A Koolen, J.H.
%A Moulton, V.
%T There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10
%J Journal of Algebraic Combinatorics
%D 2004
%P 205-217
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a0/
%G en
%F JAC_2004__19_2_a0
Koolen, J.H.; Moulton, V. There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 2, pp. 205-217. http://geodesic.mathdoc.fr/item/JAC_2004__19_2_a0/