Ambient spaces of dimensional dual arcs
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 1, pp. 5-23.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A $d$-dimensional dual arc in $PG( n, q)$ is a higher dimensional analogue of a dual arc in a projective plane. For every prime power $q$ other than 2, the existence of a $d$-dimensional dual arc ( $dge$ 2) in $PG( n, q)$ of a certain size implies $nled( d + 3)/2$ (Theorem 1). This is best possible, because of the recent construction of $d$-dimensional dual arcs in PG( d( d + 3)/2, $q)$ of size $sum^{ d-1} _{ i=0} q ^{i}$, using the Veronesean, observed first by Thas and van Maldeghem (Proposition 7). Another construction using caps is given as well (Proposition 10).
Keywords: dual arc, dual hyperoval, Veronesean
@article{JAC_2004__19_1_a4,
     author = {Yoshiara, Satoshi},
     title = {Ambient spaces of dimensional dual arcs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a4/}
}
TY  - JOUR
AU  - Yoshiara, Satoshi
TI  - Ambient spaces of dimensional dual arcs
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 5
EP  - 23
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a4/
LA  - en
ID  - JAC_2004__19_1_a4
ER  - 
%0 Journal Article
%A Yoshiara, Satoshi
%T Ambient spaces of dimensional dual arcs
%J Journal of Algebraic Combinatorics
%D 2004
%P 5-23
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a4/
%G en
%F JAC_2004__19_1_a4
Yoshiara, Satoshi. Ambient spaces of dimensional dual arcs. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a4/