Sturmian words and the permutation that orders fractional parts
Journal of Algebraic Combinatorics, Tome 19 (2004) no. 1, pp. 91-115.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Sturmian word is a map $W : \mathbb N$ mathbbN $\mathbb N$ mathbbN has cardinality exactly $n + 1$ for each positive integer $n$. Our main result is that the volume of the simplex whose $n + 1$ vertices are the $n + 1$ points in $F _{n}( W)$ does not depend on $W$. Our proof of this motivates studying algebraic properties of the permutation $pgr\_$ agr, n (where $agr$ is any irrational and $n$ is any positive integer) that orders the fractional parts $agr$, 2 $agr},\dots ,{ nagr}$, i.e., 0 $pgr\_{ $agr, n$ }(2)agr} pgr\_$ agr, n , and prove that for every irrational $agr$ there are infinitely many $n$ such that the order of $pgr\_{ $agr, n$ } (as an element of the symmetric group S \_{n})$ is less than $n$.
Keywords: Sturmian word, Beatty sequence, quasi crystal, sos permutation
@article{JAC_2004__19_1_a0,
     author = {O'Bryant, Kevin},
     title = {Sturmian words and the permutation that orders fractional parts},
     journal = {Journal of Algebraic Combinatorics},
     pages = {91--115},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a0/}
}
TY  - JOUR
AU  - O'Bryant, Kevin
TI  - Sturmian words and the permutation that orders fractional parts
JO  - Journal of Algebraic Combinatorics
PY  - 2004
SP  - 91
EP  - 115
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a0/
LA  - en
ID  - JAC_2004__19_1_a0
ER  - 
%0 Journal Article
%A O'Bryant, Kevin
%T Sturmian words and the permutation that orders fractional parts
%J Journal of Algebraic Combinatorics
%D 2004
%P 91-115
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a0/
%G en
%F JAC_2004__19_1_a0
O'Bryant, Kevin. Sturmian words and the permutation that orders fractional parts. Journal of Algebraic Combinatorics, Tome 19 (2004) no. 1, pp. 91-115. http://geodesic.mathdoc.fr/item/JAC_2004__19_1_a0/