The automorphism groups of Steiner triple systems obtained by the Bose construction
Journal of Algebraic Combinatorics, Tome 18 (2003) no. 3, pp. 159-170.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The automorphism group of the Steiner triple system of order $vequiv$ 3 (mod 6), obtained from the Bose construction using any Abelian Group $G$ of order $2 s + 1$, is determined. The main result is that if $G$ is not isomorphic to $Z _{3} ^{ n } \times Z _{9} ^{ m }, nge$ 0, $mge$ 0, the full automorphism group is isomorphic to $Hol( G) \times Z _{3}$, where $Hol( G)$ is the Holomorph of $G$. If $G$ is isomorphic to $Z _{3} ^{ n } \times Z _{9} ^{ m }$, further automorphisms occur, and these are described in full.
Keywords: Steiner triple system, Bose construction, automorphism
@article{JAC_2003__18_3_a5,
     author = {Lovegrove, G. J.},
     title = {The automorphism groups of {Steiner} triple systems obtained by the {Bose} construction},
     journal = {Journal of Algebraic Combinatorics},
     pages = {159--170},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a5/}
}
TY  - JOUR
AU  - Lovegrove, G. J.
TI  - The automorphism groups of Steiner triple systems obtained by the Bose construction
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 159
EP  - 170
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a5/
LA  - en
ID  - JAC_2003__18_3_a5
ER  - 
%0 Journal Article
%A Lovegrove, G. J.
%T The automorphism groups of Steiner triple systems obtained by the Bose construction
%J Journal of Algebraic Combinatorics
%D 2003
%P 159-170
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a5/
%G en
%F JAC_2003__18_3_a5
Lovegrove, G. J. The automorphism groups of Steiner triple systems obtained by the Bose construction. Journal of Algebraic Combinatorics, Tome 18 (2003) no. 3, pp. 159-170. http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a5/