Leaves in representation diagrams of bipartite distance-regular graphs
Journal of Algebraic Combinatorics, Tome 18 (2003) no. 3, pp. 245-254.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $Gamma$ denote a bipartite distance-regular graph with diameter $Dge$ 3 and valency $kge$ 3. Let $theta _{0} > theta _{1} ;;; > theta_{ D }$ denote the eigenvalues of $Gamma$ and let $q ^{h} _{ij}$ (0 $le$ h, i, j $le$ D) denote the Krein parameters of $Gamma$. Pick an integer $h$ (1 $le$ h $le$ D - 1). The representation diagram $Delta = Delta_{ h }$ is an undirected graph with vertices 0,1,$\dots , D$. For 0 $le$ i, j $le$ D, vertices i, j are adjacent in $Delta$ whenever i $ne$ j and $q^{h} _{ij} ne$ 0. It turns out that in $Delta$, the vertex 0 is adjacent to $h$ and no other vertices. Similarly, the vertex $D$ is adjacent to D - h and no other vertices. We call 0, $D$ the $trivial$ vertices of $Delta$. Let $l$ denote a vertex of $Delta$. It turns out that $l$ is adjacent to at least one vertex of $Delta$. We say $l$ is a $leaf$ whenever $l$ is adjacent to exactly one vertex of $Delta$. We show $Delta$ has a nontrivial leaf if and only if $Delta$ is the disjoint union of two paths.
Keywords: primitive idempotent, eigenvalue, association scheme, Q-polynomial, antipodal
@article{JAC_2003__18_3_a1,
     author = {Lang, Michael S.},
     title = {Leaves in representation diagrams of bipartite distance-regular graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {245--254},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a1/}
}
TY  - JOUR
AU  - Lang, Michael S.
TI  - Leaves in representation diagrams of bipartite distance-regular graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 245
EP  - 254
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a1/
LA  - en
ID  - JAC_2003__18_3_a1
ER  - 
%0 Journal Article
%A Lang, Michael S.
%T Leaves in representation diagrams of bipartite distance-regular graphs
%J Journal of Algebraic Combinatorics
%D 2003
%P 245-254
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a1/
%G en
%F JAC_2003__18_3_a1
Lang, Michael S. Leaves in representation diagrams of bipartite distance-regular graphs. Journal of Algebraic Combinatorics, Tome 18 (2003) no. 3, pp. 245-254. http://geodesic.mathdoc.fr/item/JAC_2003__18_3_a1/