1-homogeneous graphs with cocktail party ${\mu}$-graphs
Journal of Algebraic Combinatorics, Tome 18 (2003) no. 2, pp. 79-98.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $Gamma$ be a graph with diameter $dge$ 2. Recall $Gamma$ is 1-homogeneous (in the sense of Nomura) whenever for every edge $xy$ of $Gamma$ the distance partition $zisinV( Gamma) | part( z, y) = i, part( x, z) = j$ | 0 $lei, jled$
Keywords: distance-regular graph, 1-homogeneous, cocktail party graph, Johnson graph
@article{JAC_2003__18_2_a2,
     author = {Juri\v{s}i\'c, Aleksandar and Koolen, Jack},
     title = {1-homogeneous graphs with cocktail party ${\mu}$-graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__18_2_a2/}
}
TY  - JOUR
AU  - Jurišić, Aleksandar
AU  - Koolen, Jack
TI  - 1-homogeneous graphs with cocktail party ${\mu}$-graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 79
EP  - 98
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__18_2_a2/
LA  - en
ID  - JAC_2003__18_2_a2
ER  - 
%0 Journal Article
%A Jurišić, Aleksandar
%A Koolen, Jack
%T 1-homogeneous graphs with cocktail party ${\mu}$-graphs
%J Journal of Algebraic Combinatorics
%D 2003
%P 79-98
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__18_2_a2/
%G en
%F JAC_2003__18_2_a2
Jurišić, Aleksandar; Koolen, Jack. 1-homogeneous graphs with cocktail party ${\mu}$-graphs. Journal of Algebraic Combinatorics, Tome 18 (2003) no. 2, pp. 79-98. http://geodesic.mathdoc.fr/item/JAC_2003__18_2_a2/