On the finiteness of near polygons with 3 points on every line
Journal of Algebraic Combinatorics, Tome 18 (2003) no. 1, pp. 41-46.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $S$ be a near polygon of order ( s, t) with quads through every two points at distance 2. The near polygon $S$ is called semifinite if exactly one of $s$ and $t$ is finite. We show that $S$ cannot be semifinite if $s = 2$ and derive upper bounds for $t$.
Keywords: near polygon, generalized quadrangle
@article{JAC_2003__18_1_a2,
     author = {De Bruyn, Bart},
     title = {On the finiteness of near polygons with 3 points on every line},
     journal = {Journal of Algebraic Combinatorics},
     pages = {41--46},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__18_1_a2/}
}
TY  - JOUR
AU  - De Bruyn, Bart
TI  - On the finiteness of near polygons with 3 points on every line
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 41
EP  - 46
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__18_1_a2/
LA  - en
ID  - JAC_2003__18_1_a2
ER  - 
%0 Journal Article
%A De Bruyn, Bart
%T On the finiteness of near polygons with 3 points on every line
%J Journal of Algebraic Combinatorics
%D 2003
%P 41-46
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__18_1_a2/
%G en
%F JAC_2003__18_1_a2
De Bruyn, Bart. On the finiteness of near polygons with 3 points on every line. Journal of Algebraic Combinatorics, Tome 18 (2003) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/JAC_2003__18_1_a2/