Poincaré series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$.
Journal of Algebraic Combinatorics, Tome 17 (2003) no. 3, pp. 211-223.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We calculate the Poincaré series of the elliptic Weyl group $W( A _{2} ^{(1,1)})$, which is the Weyl group of the elliptic root system of type $A _{2} ^{(1,1)}$. The generators and relations of $W( A _{2} ^{(1,1)})$ have been already given by K. Saito and the author.
Keywords: Poincaré series, elliptic root system, elliptic Weyl group
@article{JAC_2003__17_3_a6,
     author = {Takebayashi, Tadayoshi},
     title = {Poincar\'e series of the {Weyl} groups of the elliptic root systems $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {211--223},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a6/}
}
TY  - JOUR
AU  - Takebayashi, Tadayoshi
TI  - Poincaré series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$.
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 211
EP  - 223
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a6/
LA  - en
ID  - JAC_2003__17_3_a6
ER  - 
%0 Journal Article
%A Takebayashi, Tadayoshi
%T Poincaré series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$.
%J Journal of Algebraic Combinatorics
%D 2003
%P 211-223
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a6/
%G en
%F JAC_2003__17_3_a6
Takebayashi, Tadayoshi. Poincaré series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$.. Journal of Algebraic Combinatorics, Tome 17 (2003) no. 3, pp. 211-223. http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a6/