The peak algebra of the symmetric group
Journal of Algebraic Combinatorics, Tome 17 (2003) no. 3, pp. 309-322.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The peak set of a permutation $sgr$ is the set $i : sgr( i - 1) sgr( i) > sgr( i + 1)$. The group algebra of the symmetric group $S _{n}$ admits a subalgebra in which elements are sums of permutations with a common descent set. In this paper we show the existence of a subalgebra of this descent algebra in which elements are sums of permutations sharing a common peak set. To prove the existence of this peak algebra we use the theory of enriched ( $P, gamma$)-partitions and the algebra of quasisymmetric peak functions studied by Stembridge ( Trans. Amer. Math. Soc. 349 (1997) 763-788).
Keywords: peaks, Solomon's descent algebra, quasisymmetric functions
@article{JAC_2003__17_3_a2,
     author = {Nyman, Kathryn L.},
     title = {The peak algebra of the symmetric group},
     journal = {Journal of Algebraic Combinatorics},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a2/}
}
TY  - JOUR
AU  - Nyman, Kathryn L.
TI  - The peak algebra of the symmetric group
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 309
EP  - 322
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a2/
LA  - en
ID  - JAC_2003__17_3_a2
ER  - 
%0 Journal Article
%A Nyman, Kathryn L.
%T The peak algebra of the symmetric group
%J Journal of Algebraic Combinatorics
%D 2003
%P 309-322
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a2/
%G en
%F JAC_2003__17_3_a2
Nyman, Kathryn L. The peak algebra of the symmetric group. Journal of Algebraic Combinatorics, Tome 17 (2003) no. 3, pp. 309-322. http://geodesic.mathdoc.fr/item/JAC_2003__17_3_a2/