Gröbner bases for complete uniform families
Journal of Algebraic Combinatorics, Tome 17 (2003) no. 2, pp. 171-180.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We describe (reduced) Gröbner bases of the ideal of polynomials over a field, which vanish on the set of characterisic vectors of the complete unifom families $( _{d} ^{[ n]} )$ (_text d^[n] ) . An interesting feature of the results is that they are largely independent of the monomial order selected. The bases depend only on the ordering of the variables. We can thus use past results related to the $lex$ order in the presence of degree-compatible orders, such as $deglex$. As applications, we give simple proofs of some known results on incidence matrices.
Keywords: Gröbner basis, uniform family, inclusion matrix, Hilbert function
@article{JAC_2003__17_2_a1,
     author = {Heged\'{u}s, G\'abor and R\'onyai, Lajos},
     title = {Gr\"obner bases for complete uniform families},
     journal = {Journal of Algebraic Combinatorics},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a1/}
}
TY  - JOUR
AU  - Hegedűs, Gábor
AU  - Rónyai, Lajos
TI  - Gröbner bases for complete uniform families
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 171
EP  - 180
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a1/
LA  - en
ID  - JAC_2003__17_2_a1
ER  - 
%0 Journal Article
%A Hegedűs, Gábor
%A Rónyai, Lajos
%T Gröbner bases for complete uniform families
%J Journal of Algebraic Combinatorics
%D 2003
%P 171-180
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a1/
%G en
%F JAC_2003__17_2_a1
Hegedűs, Gábor; Rónyai, Lajos. Gröbner bases for complete uniform families. Journal of Algebraic Combinatorics, Tome 17 (2003) no. 2, pp. 171-180. http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a1/