Strongly regular decompositions of the complete graph
Journal of Algebraic Combinatorics, Tome 17 (2003) no. 2, pp. 181-201.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study several questions about amorphic association schemes and other strongly regular decompositions of the complete graph. We investigate how two commuting edge-disjoint strongly regular graphs interact. We show that any decomposition of the complete graph into three strongly regular graphs must be an amorphic association scheme. Likewise we show that any decomposition of the complete graph into strongly regular graphs of (negative) Latin square type is an amorphic association scheme. We study strongly regular decompositions of the complete graph consisting of four graphs, and find a primitive counterexample to A.V. Ivanov"s conjecture which states that any association scheme consisting of strongly regular graphs only must be amorphic.
Keywords: association scheme, strongly regular graph
@article{JAC_2003__17_2_a0,
     author = {van Dam, Edwin R.},
     title = {Strongly regular decompositions of the complete graph},
     journal = {Journal of Algebraic Combinatorics},
     pages = {181--201},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a0/}
}
TY  - JOUR
AU  - van Dam, Edwin R.
TI  - Strongly regular decompositions of the complete graph
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 181
EP  - 201
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a0/
LA  - en
ID  - JAC_2003__17_2_a0
ER  - 
%0 Journal Article
%A van Dam, Edwin R.
%T Strongly regular decompositions of the complete graph
%J Journal of Algebraic Combinatorics
%D 2003
%P 181-201
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a0/
%G en
%F JAC_2003__17_2_a0
van Dam, Edwin R. Strongly regular decompositions of the complete graph. Journal of Algebraic Combinatorics, Tome 17 (2003) no. 2, pp. 181-201. http://geodesic.mathdoc.fr/item/JAC_2003__17_2_a0/