Spin models of index 2 and Hadamard models
Journal of Algebraic Combinatorics, Tome 17 (2003) no. 1, pp. 5-17.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A spin model (for link invariants) is a square matrix $W$ with non-zero complex entries which satisfies certain axioms. Recently it was shown that $^{t} WW ^{-1}$ is a permutation matrix (the order of this permutation matrix is called the $ldquo$index $rdquo$ of $W$), and a general form was given for spin models of index 2. Moreover, new spin models, called non-symmetric Hadamard models, were constructed. In the present paper, we classify certain spin models of index 2, including non-symmetric Hadamard models.
Keywords: spin model, association scheme, Hadamard matrix, Potts model
@article{JAC_2003__17_1_a4,
     author = {Nomura, Kazumasa},
     title = {Spin models of index 2 and {Hadamard} models},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2003__17_1_a4/}
}
TY  - JOUR
AU  - Nomura, Kazumasa
TI  - Spin models of index 2 and Hadamard models
JO  - Journal of Algebraic Combinatorics
PY  - 2003
SP  - 5
EP  - 17
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2003__17_1_a4/
LA  - en
ID  - JAC_2003__17_1_a4
ER  - 
%0 Journal Article
%A Nomura, Kazumasa
%T Spin models of index 2 and Hadamard models
%J Journal of Algebraic Combinatorics
%D 2003
%P 5-17
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2003__17_1_a4/
%G en
%F JAC_2003__17_1_a4
Nomura, Kazumasa. Spin models of index 2 and Hadamard models. Journal of Algebraic Combinatorics, Tome 17 (2003) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/JAC_2003__17_1_a4/