Polynomials with all zeros real and in a prescribed interval
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 231-237.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We provide a characterization of the real-valued univariate polynomials that have only real zeros, all in a prescribed interval $[ a,b]$. The conditions are stated in terms of positive semidefiniteness of related Hankel matrices.
Keywords: algebraic combinatorics, real algebraic geometry, the $\mathbb K$ mathbbk -moment problem
@article{JAC_2002__16_3_a3,
     author = {Lasserre, Jean B.},
     title = {Polynomials with all zeros real and in a prescribed interval},
     journal = {Journal of Algebraic Combinatorics},
     pages = {231--237},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a3/}
}
TY  - JOUR
AU  - Lasserre, Jean B.
TI  - Polynomials with all zeros real and in a prescribed interval
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 231
EP  - 237
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a3/
LA  - en
ID  - JAC_2002__16_3_a3
ER  - 
%0 Journal Article
%A Lasserre, Jean B.
%T Polynomials with all zeros real and in a prescribed interval
%J Journal of Algebraic Combinatorics
%D 2002
%P 231-237
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a3/
%G en
%F JAC_2002__16_3_a3
Lasserre, Jean B. Polynomials with all zeros real and in a prescribed interval. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 231-237. http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a3/