Discrete polymatroids
Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 239-268.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The discrete polymatroid is a multiset analogue of the matroid. Based on the polyhedral theory on integral polymatroids developed in late 1960's and in early 1970's, in the present paper the combinatorics and algebra on discrete polymatroids will be studied.
@article{JAC_2002__16_3_a2,
     author = {Herzog, J\"urgen and Hibi, Takayuki},
     title = {Discrete polymatroids},
     journal = {Journal of Algebraic Combinatorics},
     pages = {239--268},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a2/}
}
TY  - JOUR
AU  - Herzog, Jürgen
AU  - Hibi, Takayuki
TI  - Discrete polymatroids
JO  - Journal of Algebraic Combinatorics
PY  - 2002
SP  - 239
EP  - 268
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a2/
LA  - en
ID  - JAC_2002__16_3_a2
ER  - 
%0 Journal Article
%A Herzog, Jürgen
%A Hibi, Takayuki
%T Discrete polymatroids
%J Journal of Algebraic Combinatorics
%D 2002
%P 239-268
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a2/
%G en
%F JAC_2002__16_3_a2
Herzog, Jürgen; Hibi, Takayuki. Discrete polymatroids. Journal of Algebraic Combinatorics, Tome 16 (2002) no. 3, pp. 239-268. http://geodesic.mathdoc.fr/item/JAC_2002__16_3_a2/